FishSmart
A Standards-Based Information System for Fish Harvesting

Robert Verge, P.Eng., MBA, CA, CMC
Managing Director
Canadian Centre for Fisheries Innovation
September, 2013
Need

► Safety
 ◆ Fishing is the most dangerous occupation in the world

► Marine Operations
 ◆ Fishing is energy-intensive and must contend with hazards – weather, ocean conditions, snags and wrecks, other marine activities
 ◆ Marine transport and oil exploration and production must contend with hazards – weather, ocean conditions, fishing and other marine activities
 ◆ Search and rescue often must respond to situations that have high levels of uncertainty – location, weather, ocean conditions, vessel characteristics, vessel and crew condition

► Science
 ◆ We need more – but we need to do it economically
 ◆ Climate change
 ◆ Ecosystems
 ◆ Fish habitat
 ◆ Resource abundance
Opportunity

- Many “points of presence” to provide rich dataset
- Accumulate data over time to identify patterns, changes
- Value in sharing – collective knowledge vs. individual knowledge
It’s About Solving Problems

► It’s not about having information – it’s about solving problems

► Better information leads to better decisions – and better solutions
 ◆ Faster response
 ◆ Outcomes better suited to the need
 ◆ Less risk

► Fishing problems require better solutions
 ◆ Risk
 • Safety of vessel and crew
 • Finding fish to catch
 • Gear damage/loss
 ◆ Operational efficiency
 • Steaming time vs. fishing time
 • Catch per unit of effort
 ◆ Resource sustainability
 • Ocean conditions
 • Resource presence and abundance
 • Fish size and condition
 • By-catch
Enabling Technologies

- The past 60 years have been shaped by the evolution of computers and communications technology.

- Two critical pieces – inexpensive powerful computers and the Internet – became established in the 1990s and rolled out across the world in the early 2000s.

- More recent technological developments have included:
 - A wide variety of sensors
 - Satellite-based geographic tracking
 - Inter-connected real-time digital infrastructure
 - Data analytics
 - Search engines
 - Hand-held devices for both data entry and data access
 - Digital supply chains

- These have fundamentally altered our society through capturing information, improving knowledge, and gaining insight.
Information Use is Changing

- Personal holdings → Shared Holdings
- Paper-based → Digital
- Dispersed → Centralized, comprehensive
- Structured reports → Data mining to gain insight
A Social Media Approach

► Social media employ web- and mobile-based technologies to allow creation and exchange of **user-created content** and support **interactive dialogue** – i.e. two-way flow of information
 ♦ Technology and interaction together lead to co-creation of value

► FishSmart will use similar principles
 ♦ User-created content
 ♦ Sharing through the Internet and mobile technologies
 ♦ Feedback and interactivity

► Fishers have a commonality of interest in
 ♦ Safety
 ♦ Operational efficiency
 ♦ Resource sustainability

► It’s about improving the probability of success and reducing and managing risks
Scientists and fishermen work together to understand how walleye pollock respond to a changing environment.
The Future

- With the basic infrastructure in place, both businesses and consumers are demanding more from software and services
- The mobile portable device is becoming an all-purpose digital gateway
- All this is changing the way we live and work
FishSmart

Data Gathering → Analytical Models → Decision Support Tools → Better Decisions
Key Decisions – Fishing

► Where to fish
 ♦ Fish habitat – e.g. bottom type, depth, water temperature, ocean currents
 ♦ Resource presence and abundance
 ♦ Obstructions
 ♦ Interaction with other harvesters

► When to fish
 ♦ Ocean conditions
 ♦ Atmospheric conditions

► How to fish
 ♦ Ocean conditions
 ♦ Atmospheric conditions

► Decision period
 ♦ Short-term – next fishing trip, today
 ♦ Long-term – planning for a fishing season
Key Questions – Science

► How many fish are out there?

► Where do they congregate?

► What are their migration paths?

► Is their habitat changing?

► How are habitat changes impacting on resource abundance and distribution?
Ocean bottom conditions
- Fish habitat
 - Depth
 - Bottom type
 - Water temperature
 - Ocean currents
- Obstructions – wrecks, snags

Ocean conditions
- Sea state
- Water temperature
- Ocean currents

Atmospheric conditions
- Air temperature
- Wind speed
- Precipitation
Data – 2

► Vessel operation
 ◆ Location
 ◆ Heading
 ◆ Fuel consumption

► Fishing effort
 ◆ No. tows
 ◆ Duration of tows
 ◆ Tow depth

► Catch
 ◆ Weight
 ◆ By-catch
 ◆ Size
 ◆ Condition
Reports

- Ocean bottom conditions
- Ocean conditions
- Atmospheric conditions
- Vessel traffic
- Vessel operations
- Catch characteristics
- Operational efficiency
- Special inquiries (data mining)

This information is useful for vessel owners/operators, DFO, Coast Guard, SAR, Environment Canada, Transport Canada, other commercial marine operators.
Development Issues

► Are fishers willing to allow their vessels to be used for data collection? Under what conditions?
 ♦ We need to define the value proposition that makes it worthwhile

► Are potential users interested in the data? Under what conditions?
 ♦ We need to define users’ decision making protocols, data needs, and reporting requirements

► What technologies are available to collect, transmit, process, and report the data?
 ♦ Can these technologies meet users’ requirements?

► What will it cost?
 ♦ Development
 ♦ Operation

► How can development and operational costs be financed?